1 research outputs found

    Implementation of Generic and Efficient Architecture of Elliptic Curve Cryptography over Various GF(p) for Higher Data Security

    Get PDF
    Elliptic Curve Cryptography (ECC) has recognized much more attention over the last few years and has time-honored itself among the renowned public key cryptography schemes. The main feature of ECC is that shorter keys can be used as the best option for implementation of public key cryptography in resource-constrained (memory, power, and speed) devices like the Internet of Things (IoT), wireless sensor based applications, etc. The performance of hardware implementation for ECC is affected by basic design elements such as a coordinate system, modular arithmetic algorithms, implementation target, and underlying finite fields. This paper shows the generic structure of the ECC system implementation which allows the different types of designing parameters like elliptic curve, Galois prime finite field GF(p), and input type. The ECC system is analyzed with performance parameters such as required memory, elapsed time, and process complexity on the MATLAB platform. The simulations are carried out on the 8th generation Intel core i7 processor with the specifications of 8 GB RAM, 3.1 GHz, and 64-bit architecture. This analysis helps to design an efficient and high performance architecture of the ECC system on Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA).Elliptic Curve Cryptography (ECC) has recognized much more attention over the last few years and has time-honored itself among the renowned public key cryptography schemes. The main feature of ECC is that shorter keys can be used as the best option for implementation of public key cryptography in resource-constrained (memory, power, and speed) devices like the Internet of Things (IoT), wireless sensor based applications, etc. The performance of hardware implementation for ECC is affected by basic design elements such as a coordinate system, modular arithmetic algorithms, implementation target, and underlying finite fields. This paper shows the generic structure of the ECC system implementation which allows the different types of designing parameters like elliptic curve, Galois prime finite field GF(p), and input type. The ECC system is analyzed with performance parameters such as required memory, elapsed time, and process complexity on the MATLAB platform. The simulations are carried out on the 8th generation Intel core i7 processor with the specifications of 8 GB RAM, 3.1 GHz, and 64-bit architecture. This analysis helps to design an efficient and high performance architecture of the ECC system on Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA)
    corecore